Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.971
Filtrar
1.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582597

RESUMO

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Assuntos
Aldeídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistência à Doença , Hesperidina/análise , Hesperidina/metabolismo , Hesperidina/farmacologia , Triptofano/metabolismo , Simulação de Acoplamento Molecular , Frutas
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612864

RESUMO

Flavonoids exhibit various bioactivities including anti-oxidant, anti-tumor, anti-inflammatory, and anti-viral properties. Methylated flavonoids are particularly significant due to their enhanced oral bioavailability, improved intestinal absorption, and greater stability. The heterologous production of plant flavonoids in bacterial factories involves the need for enough biosynthetic precursors to allow for high production levels. These biosynthetic precursors are malonyl-CoA and l-tyrosine. In this work, to enhance flavonoid biosynthesis in Streptomyces albidoflavus, we conducted a transcriptomics study for the identification of candidate genes involved in l-tyrosine catabolism. The hypothesis was that the bacterial metabolic machinery would detect an excess of this amino acid if supplemented with the conventional culture medium and would activate the genes involved in its catabolism towards energy production. Then, by inactivating those overexpressed genes (under an excess of l-tyrosine), it would be possible to increase the intracellular pools of this precursor amino acid and eventually the final flavonoid titers in this bacterial factory. The RNAseq data analysis in the S. albidoflavus wild-type strain highlighted the hppD gene encoding 4-hydroxyphenylpyruvate dioxygenase as a promising target for knock-out, exhibiting a 23.2-fold change (FC) in expression upon l-tyrosine supplementation in comparison to control cultivation conditions. The subsequent knock-out of the hppD gene in S. albidoflavus resulted in a 1.66-fold increase in the naringenin titer, indicating enhanced flavonoid biosynthesis. Leveraging the improved strain of S. albidoflavus, we successfully synthesized the methylated flavanones hesperetin, homoeriodictyol, and homohesperetin, achieving titers of 2.52 mg/L, 1.34 mg/L, and 0.43 mg/L, respectively. In addition, the dimethoxy flavanone homohesperetin was produced as a byproduct of the endogenous metabolism of S. albidoflavus. To our knowledge, this is the first time that hppD deletion was utilized as a strategy to augment the biosynthesis of flavonoids. Furthermore, this is the first report where hesperetin and homoeriodictyol have been synthesized from l-tyrosine as a precursor. Therefore, transcriptomics is, in this case, a successful approach for the identification of catabolism reactions affecting key precursors during flavonoid biosynthesis, allowing the generation of enhanced production strains.


Assuntos
Anormalidades Craniofaciais , Flavonas , Flavonoides , Perfilação da Expressão Gênica , Hesperidina , Streptomyces , Aminoácidos , Tirosina
3.
Redox Rep ; 29(1): 2341470, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629504

RESUMO

Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.


Assuntos
Antineoplásicos , Hesperidina , Ototoxicidade , Humanos , Cisplatino/toxicidade , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antineoplásicos/toxicidade , Células Ciliadas Auditivas/metabolismo , Apoptose
4.
Food Chem Toxicol ; 186: 114549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442786

RESUMO

The tight junctions (TJs) and barrier function of the intestinal epithelium are highly sensitive to radiation. However, polyphenols can be used to reverse the effects of radiation. Here, we investigated the effects of hesperidin (hesperetin-7-rhamnoglucoside) on X-ray-induced intestinal barrier dysfunction in human epithelial Caco-2 monolayers. To examine whether hesperidin mitigated the effects of X-ray exposure (2 Gy), cell survival was evaluated and intestinal barrier function was assessed by measuring the transepithelial flux, apparent permeability coefficient (Papp), and barrier integrity. Hesperidin improved the survival of Caco-2 cell monolayers and attenuated X-ray exposure-induced intestinal barrier dysfunction. For fluorescein transport experiments, transepithelial flux and Papp of fluorescein in control group were significantly elevated by X-ray, but were restored to near control by 10 µM hesperidin pretreatment. Further, X-ray exposure decreased the barrier integrity and TJ interruption by reducing TJ-related proteins occludin and claudin-4, whereas cell monolayers pretreated with hesperidin before X-ray exposure were reinstated to control level. It was concluded that hesperidin treatment before X-ray exposure alleviated X-ray-induced intestinal barrier dysfunction through regulation of TJ-related proteins. These results indicate that hesperidin prevents and mitigates X-ray-induced intestinal barrier dysfunction.


Assuntos
Gastroenteropatias , Hesperidina , Enteropatias , Humanos , Células CACO-2 , Hesperidina/farmacologia , Raios X , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Junções Íntimas , Permeabilidade
5.
Sci Rep ; 14(1): 7237, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538818

RESUMO

Recent experimental data shows that hesperetin, a citrus flavonoid, affects potassium channels and can prolong the QTc interval in humans. Therefore, in the present study we investigated the effects of hesperetin on various transmembrane ionic currents and on ventricular action potentials. Transmembrane current measurements and action potential recordings were performed by patch-clamp and the conventional microelectrode techniques in dog and rabbit ventricular preparations. At 10 µM concentration hesperetin did not, however, at 30 µM significantly decreased the amplitude of the IK1, Ito, IKr potassium currents. Hesperetin at 3-30 µM significantly and in a concentration-dependent manner reduced the amplitude of the IKs current. The drug significantly decreased the amplitudes of the INaL and ICaL currents at 30 µM. Hesperetin (10 and 30 µM) did not change the action potential duration in normal preparations, however, in preparations where the repolarization reserve had been previously attenuated by 100 nM dofetilide and 1 µg/ml veratrine, caused a moderate but significant prolongation of repolarization. These results suggest that hesperetin at close to relevant concentrations inhibits the IKs outward potassium current and thereby reduces repolarization reserve. This effect in certain specific situations may prolong the QT interval and consequently may enhance proarrhythmic risk.


Assuntos
Flavonoides , Hesperidina , Humanos , Coelhos , Cães , Animais , Flavonoides/farmacologia , Ventrículos do Coração , Hesperidina/farmacologia , Potenciais de Ação/fisiologia , Potássio/farmacologia
6.
Sci Rep ; 14(1): 7434, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548778

RESUMO

Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.


Assuntos
Hesperidina , Nefropatias , Insuficiência Renal , Ratos , Animais , Masculino , Ciclosporina/farmacologia , NF-kappa B/metabolismo , Catalase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Wistar , Fosfato de Sitagliptina/efeitos adversos , Creatinina , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Rim/metabolismo , Estresse Oxidativo , Insuficiência Renal/patologia , Glutationa/metabolismo , Ureia/metabolismo , Superóxido Dismutase/metabolismo , Glucose/metabolismo
8.
J Agric Food Chem ; 72(14): 8027-8038, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38529939

RESUMO

There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.


Assuntos
Citrus , Hesperidina/análogos & derivados , Aldeído Pirúvico , Humanos , Animais , Camundongos , Glioxal , Sinefrina , Espectrometria de Massas em Tandem , Óxido de Magnésio , Flores
9.
Eur J Pharmacol ; 971: 176541, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556120

RESUMO

Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1ß, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.


Assuntos
Antioxidantes , Hesperidina , Traumatismos da Medula Espinal , Ratos , Animais , Caspase 3/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Apoptose , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Medula Espinal
10.
Gene ; 911: 148357, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462023

RESUMO

PURPOSE: The most common malignancy among women worldwide is breast cancer. The estrogen receptor plays a vital role in this cancer. One of the most well-known mechanisms that affects the activity of this receptor is its phosphorylation by protein kinase pathways. Hesperetin, a flavonoid abundant in citrus species such as lemons, grapefruits, and oranges, is the aglycone form of hesperidin. It has undergone thorough evaluation for its potential anti-cancer properties, particularly in the context of breast cancer. Studies have shown that hesperetin has an effect on intracellular kinase pathways. The aim of this study was to investigate the effect of hesperetin on the expression, phosphorylation and activity of estrogen receptor alpha (ERα) in MCF-7 breast cancer cell line. STUDY DESIGN AND METHODS: MCF-7 cells were cultured in RPMI-1640 phenol red-free medium supplemented with charcoal-stripped FBS and treated with hesperetin. The MTT method was used to evaluate cell survival. The levels of the ERα protein and its phosphorylated form (Ser118) were determined via western blotting. A luciferase reporter vector was used to evaluate ERE activity. RESULTS: The results of this study indicated that hesperetin reduced the survival of MCF-7 cells in a dose-dependent manner. The expression and phosphorylation (at Ser118) of the ERα significantly increased and decreased, respectively, in the groups treated with hesperetin. Hesperetin increased the activity of the ERα in the absence of E2, although these differences were not statistically significant. Conversely, in the presence of E2, hesperetin caused a significant decrease in receptor activity. CONCLUSION: Based on the results of this study, it can be concluded that hesperetin has a significant effect on ERα expression, phosphorylation and activity.


Assuntos
Neoplasias da Mama , Hesperidina , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Hesperidina/farmacologia , Fosforilação , Estradiol , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células
11.
Food Res Int ; 182: 114134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519156

RESUMO

Hesperidin is a phenolic compound usually found in citrus fruits, which is known for its anti-inflammatory and antioxidant properties. This bioactive compound has already been used to formulate medications to treat chronic venous insufficiency. In this work, through a system which allows the in-line coupling of the pressurized liquid extraction (PLE) and high-intensity ultrasound (HIUS) with solid phase extraction (SPE), and analysis by high-performance liquid chromatography with UV-Vis detector (HPLC-UV) in on-line mode, a method was developed to obtain, separate, and quantify hesperidin from the industrial waste of lime. An eco-friendly approach with water and ethanol as extraction solvents was used. Parameters such as temperature (80, 100, and 120 °C) and HIUS power (0, 200, and 400 W) were evaluated regarding hesperidin yield. In this context, the higher hesperidin yield (18.25 ± 1.52 mg/g) was achieved using water at a subcritical state (120 °C and 15 MPa). The adsorbent SepraTM C-18-E isolated hesperidin from the other extracted compounds employing 50% ethanol in the SPE elution. The possibility ofon-lineanalysis coupling a high-performance liquid chromatograph to an ultraviolet detector (HPLC-UV) system was studied and shown to be a feasible approach for developing integrated technologies. Conventional extractions and their antioxidant capacities were evaluated, highlighting the advantages of the HIUS-PLE-SPE extractive method. Furthermore, the on-linechromatographic analysis showed the potential of the HIUS-PLE-SPE- HPLC-UV system to quantify the extracted compounds in real time.


Assuntos
Compostos de Cálcio , Hesperidina , Óxidos , Antioxidantes , Água/química , Etanol
12.
Food Funct ; 15(8): 4233-4245, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517352

RESUMO

The aggregation of ß-amyloid (Aß) peptides to form amyloid plaques is one of the primary hallmarks for Alzheimer's disease (AD). Dietary flavonoid supplements containing hesperetin have an ability to decline the risk of developing AD, but the molecular mechanism is still unclear. In this work, hesperetin, a flavanone abundant in citrus fruits, has been proven to prevent the formation of Aß aggregates and depolymerized preformed fibrils in a concentration-dependent fashion. Hesperetin inhibited the conformational conversion from the natural structure to a ß-sheet-rich conformation. It was found that hesperetin significantly reduced the cytotoxicity and relieved oxidative stress eventuated by Aß aggregates in a concentration-dependent manner. Additionally, the beneficial effects of hesperetin were confirmed in Caenorhabditis elegans, including the inhibition of the formation and deposition of Aß aggregates and extension of their lifespan. Finally, the results of molecular dynamics simulations showed that hesperetin directly interacted with an Aß42 pentamer mainly through strong non-polar and electrostatic interactions, which destroyed the structural stability of the preformed pentamer. To summarize, hesperetin exhibits great potential as a prospective dietary supplement for preventing and improving AD.


Assuntos
Peptídeos beta-Amiloides , Caenorhabditis elegans , Hesperidina , Hesperidina/farmacologia , Hesperidina/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Animais , Caenorhabditis elegans/efeitos dos fármacos , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Amiloide/metabolismo , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos
13.
J Med Virol ; 96(4): e29555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546037

RESUMO

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Assuntos
Fator de Iniciação 4E em Eucariotos , Hesperidina , Vírus Vaccinia , Animais , Bovinos , Chlorocebus aethiops , Embrião de Galinha , Células Vero , Simulação de Acoplamento Molecular , Vírus Vaccinia/genética , Antivirais/farmacologia , RNA Mensageiro , Replicação Viral
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124172, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513316

RESUMO

Hesperidin (HE), a significant flavonoid polyphenolic compound present in citrus plants, exhibits diverse pharmacological effects. Considering the crucial involvement of biological membranes and transporter proteins in the transportation and biological processes of HE, it becomes essential to comprehend the potential mechanisms through which HE interacts with membranes and transporter proteins. In order to simulate the process of active molecule transport, a cell membrane model consisting of 1,2-dipalmitoyl-n-glycero-3-phosphatidylcholine (DPPC) and a transporter protein model of bovine serum albumin (BSA) were employed for investigation. The present study aimed to investigate the mechanism of action of hesperidin (HE) in DPPC and BSA using fluorescence quenching, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The localization and interaction of HE within liposomes were also elucidated. Furthermore, the binding of BSA and HE was analyzed through UV/Vis absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and computational biology techniques. Computational biology analysis revealed that the binding between HE and BSA primarily occurred via hydrogen bonding and hydrophobic interactions. This study aimed to investigate the role and mechanism of HE in the DPPC cell membrane model and the BSA transporter protein model, thereby offering novel insights into the action of HE in DPPC and BSA.


Assuntos
Hesperidina , Soroalbumina Bovina/química , Lipossomos/química , Flavonoides/química , 1,2-Dipalmitoilfosfatidilcolina , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Fluorescência
15.
Appl Microbiol Biotechnol ; 108(1): 250, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430417

RESUMO

The fungal diglycosidase α-rhamnosyl-ß-glucosidase I (αRßG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRßG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRßG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRßG I resulted in products bearing a single rutinose moiety. • αRßG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).


Assuntos
Acremonium , Hesperidina , Hesperidina/química , Glicerol
16.
Acta Cir Bras ; 39: e391124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477785

RESUMO

PURPOSE: This study evaluated the protective effect of hesperidin on injury induced by gastric ischemia-reperfusion. METHODS: Fifty male Sprague Dawley rats (250-300 g) were divided into five groups: control (C), sham (S), ischemia (I), ischemia-reperfusion (I/R) and hesperidin + ischemia-reperfusion (Hes + I/R). Hesperidin was injected intraperitoneally at the dose of 100 mg/kg one hour before the experimental stomach ischemia-reperfusion. Celiac artery was ligated. After 45 minutes ischemia and 60 minutes reperfusion period, blood samples were obtained under anesthesia. Then, animals were sacrificed, stomach tissues were excised for biochemical, and histopathological analyses were performed. Malondialdehyde levels and superoxide dismutase, glutathione peroxidase activities and total antioxidant status (TAS), total oxidant status (TOS), protein, total thiol parameters were measured in plasma, and tissue homogenate samples. H + E, periodic acid-Schiff, hypoxia inducible factor, terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. RESULTS: Upon biochemical and histopathological assessment, hesperidin decreased stomach tissue changes in comparison with IR group. Ischemia-reperfusion injury led to a considerably increase in malondialdehyde, protein, and TOS levels (p < 0.001) in stomach tissue. Hesperidin treatment significantly decreased malondialdehyde, protein, and TOS levels (p < 0.001). Hesperidin increased superoxide dismutase, TAS, total thiol and glutathione peroxidase activities in comparison with IR group. Hesperidin reduced damage and also increased TUNEL and PCNA immunoreactivity in stomach tissue. CONCLUSIONS: Hesperidin was able to decrease I/R injury of the stomach tissue due to inhibition of lipid peroxidation and protein oxidation, duration of antioxidant, and free radical scavenger properties. Consequently, hesperidin can provide a beneficial therapeutic choice for preventing stomach tissue ischemia-reperfusion injury in clinical application.


Assuntos
Hesperidina , Traumatismo por Reperfusão , Masculino , Ratos , Animais , Antígeno Nuclear de Célula em Proliferação , Antioxidantes , Ratos Sprague-Dawley , Estômago , Superóxido Dismutase , Isquemia , Malondialdeído , Compostos de Sulfidrila , Glutationa Peroxidase
17.
Life Sci ; 342: 122533, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428570

RESUMO

The World Health Organization recommends breastfeeding for 6 months, but mastitis, a common disease during lactation, presents a major obstacle to fulfilling this recommendation. Maternal nutrient intake during lactation has been shown to be related to mastitis. Therefore, this study aimed to explore the effect of hesperetin, a phytonutrient, on mastitis. The oral administration of hesperetin to lipopolysaccharide (LPS)-induced mastitis mice alleviated their pathological damage, reduced the secretion of pro-inflammatory cytokines, and maintained the integrity of their blood-milk barrier. Moreover, our results showed that oral administration of hesperetin regulates the composition of the intestinal flora of mice. Fecal microbial transplantation (FMT) from the mice of hesperetin group alleviated LPS-induced mastitis in recipient mice. In additional, hesperetin attenuated the inflammatory response and increased the expression of tight junction proteins (TJs) in LPS-stimulated mouse mammary epithelial cells (mMECs). Through network pharmacological analysis and further research, we demonstrated hesperetin inhibits the expression of TLR4 and the activation of NF-κB signaling. In conclusion, hesperetin protects the blood-milk barrier and improve mastitis by regulating intestinal flora and inhibiting the activation of TLR4/NF-κB signaling axis. This study provides a theoretical basis for lactating females to consume hesperetin as a supplement to prevent mastitis and maintain mammary health.


Assuntos
Microbioma Gastrointestinal , Hesperidina , Mastite , Humanos , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Leite/metabolismo , Lactação , Lipopolissacarídeos/efeitos adversos , Mastite/prevenção & controle , Mastite/metabolismo , Mastite/patologia , Glândulas Mamárias Animais/metabolismo
18.
J Agric Food Chem ; 72(11): 5828-5841, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442256

RESUMO

α-Dicarbonyl compounds, such as glyoxal (GO) and methylglyoxal (MGO), are a series of chemical hazards that exist in vivo and in vitro, posing a threat to human health. We aimed to explore the scavenging effects on GO/MGO by synephrine (SYN) alone or in combination with neohesperidin (NEO). First, through LC-MS/MS, we confirmed that both SYN and NEO could effectively remove GO and form GO adducts, while NEO could also clear MGO by forming MGO adducts, and its ability to clear MGO was stronger than that of GO. Second, a synergistic inhibitory effect on GO was found when SYN and NEO were used in combination by using the Chou-Talalay method; on the other hand, SYN could promote NEO to clear more MGO, although SYN could not capture MGO. Third, after synthesizing four GO/MGO-adducts (SYN-GO-1, SYN-GO-3, NEO-GO-7, and NEO-MGO-2) and identifying their structure through NMR, strict correlations between the GO/MGO-adducts and the GO/MGO-clearance rate were found when using SYN and NEO alone or in combination. Furthermore, it was inferred that the synergistic effect between SYN and NEO stems from their mutual promotion in capturing more GO by the quantitative analysis of the adducts in the combined model. Finally, a study was conducted on flowers of Citrus aurantium L. var. amara Engl. (FCAVA, an edible tea) rich in SYN and NEO, which could serve as an effective GO and MGO scavenger in the presence of both GO and MGO. Therefore, our study provided well-defined evidence that SYN and NEO, alone or in combination, could efficiently scavenge GO/MGO at high temperatures, whether in the pure form or located in FCAVA.


Assuntos
Glioxal , Hesperidina/análogos & derivados , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/química , Glioxal/química , Sinefrina , Cromatografia Líquida , Óxido de Magnésio , Temperatura , Espectrometria de Massas em Tandem
19.
CNS Neurosci Ther ; 30(2): e14567, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421106

RESUMO

AIMS: This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS: Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS: Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION: Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.


Assuntos
Lesões Encefálicas Traumáticas , Hesperidina , Humanos , Microglia , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/farmacologia , Lisina/metabolismo , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Doenças Neuroinflamatórias , Hesperidina/metabolismo , Hesperidina/farmacologia , Citratos , Lesões Encefálicas Traumáticas/metabolismo
20.
Plant Physiol Biochem ; 208: 108445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402801

RESUMO

The ubiquitous metalloid arsenic (As), which is not essential, can be found extensively in the soil and subterranean water of numerous nations, raising substantial apprehensions due to its impact on both agricultural productivity and sustainability. Plants exposed to As often display morphological, physiological, and growth-related abnormalities, collectively leading to reduced productivity. Polyphenols, operating as secondary messengers within the intricate signaling networks of plants, assume integral functions in the acquisition of resistance to diverse environmental stressors, including but not limited to drought, salinity, and exposure to heavy metals. The pivotal roles played by polyphenols in these adaptive processes underscore their profound significance in plant biology. This study aims to elucidate the impact of hesperidin (HP) and chlorogenic acid (CA), recognized as potent bioactive compounds, on maize plants exposed to As. To achieve this objective, the study examined the physiological and biochemical impacts, including growth parameters, photosynthesis, and chloroplastic antioxidants, of HP (100 µM) and CA (50 µM) on Zea mays plants exposed to arsenate stress (AsV, 100 µM - Na2HAsO4⋅7H2O). As toxicity led to reductions in fresh weight (FW) and dry weight (DW) by 33% and 26%, respectively. However, the application of As+HP and As + CA increased FW by 22% and 40% and DW by 14% and 17%, respectively, alleviating the effects of As stress. As toxicity resulted in the up-regulation of PSII genes (psbA and psbD) and PSI genes (psaA and psaB), indicating a potential response to the re-formation of degraded regions, likely driven by the heightened demand for photosynthesis. Exogenous HP or/and CA treatments effectively counteracted the adverse effects of As toxicity on the photochemical quantum efficiency of PSII (Fv/Fm). H2O2 content showed a 23% increase under As stress, and this increase was evident in guard cells when examining confocal microscopy images. In the presence of As toxicity, the chloroplastic antioxidant capacity can exhibit varying trends, with either a decrease or increase observed. After the application of CA and/or HP, a significant increase was observed in the activity of GR, APX, GST, and GPX enzymes, resulting in decreased levels of H2O2 and MDA. Additionally, the enhanced functions of MDHAR and DHAR have modulated the redox status of ascorbic acid (AsA) and glutathione (GSH). The HP or CA-mediated elevated levels of AsA and GSH content further contributed to the preservation of redox homeostasis in chloroplasts facing stress induced by As. In summary, the inclusion of HP and CA in the growth medium sustained plant performance in the presence of As toxicity by regulating physiological and biochemical characteristics, chloroplastic antioxidant enzymes, the AsA-GSH cycle and photosynthesis processes, thereby demonstrating their significant potential to confer resistance to maize through the mitigation of As-induced oxidative damage and the safeguarding of photosynthetic mechanisms.


Assuntos
Arsênio , Hesperidina , Antioxidantes/metabolismo , Zea mays/metabolismo , Arsênio/farmacologia , Ácido Clorogênico/metabolismo , Hesperidina/farmacologia , Hesperidina/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oxirredução , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Glutationa/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...